ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Oak Ridge community roundtable explores workforce challenges
Federal and contractor officials, community leaders, and educators gathered in Knoxville, Tenn., on October 29 for a roundtable event focused on ensuring the Oak Ridge Office of Environmental Management (OREM) and its partners have the resources and infrastructure needed to support a robust, talented workforce in the years ahead.
Deokjung Lee
Nuclear Science and Engineering | Volume 174 | Number 3 | July 2013 | Pages 300-317
Technical Paper | doi.org/10.13182/NSE12-27
Articles are hosted by Taylor and Francis Online.
The impact of the dynamic condensation of energy groups on the convergence characteristics of the coarse mesh finite difference (CMFD) algorithm has been analyzed within the framework of two-group (2-G) one-node (1-N) local kernel (CMFD1N) and one-group or 2-G global CMFD formulations. Three algorithms were analyzed by the method of linearizing the nonlinear algorithms and applying Fourier analysis to the linearized algorithms: partial current sweep (PCS), CMFD1N, and CMFD1N with dynamic condensation (CMFD1N-DC). Because of the dynamic condensation, the spectral radius of the CMFD1N-DC algorithm is influenced by the other two algorithms; i.e., it shows a similar behavior to the PCS algorithm for small mesh sizes and a similar behavior to the CMFD1N algorithm for large mesh sizes. From the theoretical derivation, it was shown that the spectral radius is determined by the combination of partial current spectrum update in the local PCS kernel and the current correction factor update in the global CMFD. Specifically, the convergence properties of the CMFD1N-DC algorithm follow those of the PCS algorithm for small mesh sizes since the energy spectrum is only updated in the local kernel. It was also observed that the relaxation parameter for the CMFD1N-DC algorithm needs to be determined with the fast group cross-section data because of the dynamic condensation.