ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Brian C. Kiedrowski, Forrest B. Brown
Nuclear Science and Engineering | Volume 174 | Number 3 | July 2013 | Pages 227-244
Technical Paper | doi.org/10.13182/NSE12-46
Articles are hosted by Taylor and Francis Online.
A continuous-energy Monte Carlo method is developed to compute adjoint-based k-eigenvalue sensitivity coefficients with respect to nuclear data. The method is implemented into MCNP6 and is based upon similar methodologies used to compute other adjoint-weighted quantities. The Monte Carlo tallies employed are explained. Verification of the method is performed by comparing results to analytic solutions, direct density perturbations, and those from other software packages such as TSUNAMI-3D and MONK. Results of analytic solutions agree within a few tenths of a percent. Direct density perturbations and comparisons with other software generally agree within a few percent.