ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Massimiliano Rosa, James S. Warsa, Michael Perks
Nuclear Science and Engineering | Volume 174 | Number 3 | July 2013 | Pages 209-226
Technical Paper | doi.org/10.13182/NSE12-57
Articles are hosted by Taylor and Francis Online.
A Fourier analysis is conducted in two-dimensional (2-D) geometry for the discrete ordinates (SN) approximation of the neutron transport problem solved with Richardson iteration (source iteration) using the cellwise block-Jacobi (bJ) and block-Gauss-Seidel (bGS) algorithms. The results of the Fourier analysis show that convergence of bJ can degrade, leading to a spectral radius equal to 1, in problems containing optically thin cells. For problems containing cells that are optically thick, instead, tends to 0. Hence, in the optically-thick-cell regime, bJ is rapidly convergent even for scattering-dominated problems. Similar conclusions hold for bGS, except bGS approaches the asymptotic, thick-cell regime at convergence rates higher than bJ. Hence, we have implemented the bGS algorithm on the Roadrunner hybrid, parallel computer architecture. A compute node of this massively parallel machine comprises AMD Opteron cores that are linked to a Cell Broadband Engine (Cell/B.E.). LAPACK routines have been ported to the Cell/B.E. in order to make use of its parallel synergistic processing elements (SPEs). The bGS algorithm is based on the LU factorization and solution of a linear system that couples the fluxes for all SN angles and energy groups on a mesh cell. For every cell of a mesh that has been parallel decomposed on the higher-level Opteron processors, a linear system is transferred to the Cell/B.E. and the parallel LAPACK routines are used to compute a solution, which is then transferred back to the Opteron, where the rest of the SN transport computations take place. Compared to standard parallel machines, a one-hundred-fold speedup of the bGS was observed on Roadrunner. Numerical experiments with strong and weak parallel scaling demonstrate that the bGS method is viable and compares favorably to full parallel transport sweeps (FPS) on 2-D unstructured meshes when it is applied to optically thick, multimaterial problems. Specifically, the strong parallel efficiency of accelerated bGS on Roadrunner can achieve 73% at 512 processors, compared with 32 processors, while efficiency is 34% for the (Opteron-only) implementation of FPS. The weak parallel efficiency of bGS is 58% while it reaches 10% for FPS. As expected, however, bGS is not as efficient as FPS in optically thin problems.