ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Flamanville-3 reaches full power
France’s state-owned electric utility EDF has announced that Flamanville-3—the country’s first EPR—reached full nuclear thermal power for the first time, generating 1,669 megawatts of gross electrical power. This major milestone is significant in terms of both this project and France’s broader nuclear sector.
M. M. R. Williams
Nuclear Science and Engineering | Volume 174 | Number 2 | June 2013 | Pages 172-178
Technical Paper | doi.org/10.13182/NSE12-45
Articles are hosted by Taylor and Francis Online.
A new approach is developed for solving stochastic eigenvalue problems that arise when uncertainty is present in the cross-section data in a critical assembly. The method has been shown to agree with values obtained from a direct quadrature. The new approach, which uses a polynomial chaos expansion (PCE), does not involve the nonlinear equations associated with the classical method of PCE, but rather a linear equation obtained by considering an equivalent time-dependent problem; it therefore leads to much simpler calculational procedures. The convergence of the method is rapid, and it is illustrated by numerical examples based upon a criticality problem and also by comparison with a problem that uses the nonlinear method.