ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
A. Bhattacharya, S. D. Yu
Nuclear Science and Engineering | Volume 174 | Number 1 | May 2013 | Pages 60-78
Technical Paper | doi.org/10.13182/NSE12-31
Articles are hosted by Taylor and Francis Online.
This paper presents the development of comprehensive computational fluid dynamics models for unsteady flows of coolant through a string of 12 CANDU 6 fuel bundles with angular misalignments inside a pressure tube by means of large eddy simulation. The computational scheme is first validated against the numerical and experimental data available in the literature for an array of parallel rods without end plates. The converged numerical results for the 12-bundle string are then successfully obtained by utilizing 60 supercomputers and parallel processing. The computed mean and root-mean-square values of the lateral fluid forces indicate that it is necessary to model the entire fuel string in a channel to accurately quantify the unsteady flow-induced excitations.