ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Kaushik Banerjee, William R. Martin
Nuclear Science and Engineering | Volume 174 | Number 1 | May 2013 | Pages 30-45
Technical Paper | doi.org/10.13182/NSE11-94
Articles are hosted by Taylor and Francis Online.
Monte Carlo point detector and surface crossing flux tallies are two widely used tallies, but they suffer from an unbounded variance. As a result, the central limit theorem cannot be used for these tallies to estimate confidence intervals. By construction, kernel density estimator (KDE) tallies can be directly used to estimate flux at a point, but the variance of this point estimate does not converge as 1/N, which is not unexpected for a point quantity. However, an improved approach is to modify both point detector and surface crossing flux tallies directly by using KDE within a variance reduction approach and taking advantage of the fact that KDE estimates the underlying probability density function. This methodology is illustrated by several numerical examples and shows numerically that both the surface crossing tally and the point detector tally converge as 1/N (in variance), and both are asymptotically unbiased.