ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Syed Hameed Qaiser, Masood Iqbal, Aamer Iqbal Bhatti, Raza Samar, Javed Qadir
Nuclear Science and Engineering | Volume 172 | Number 3 | November 2012 | Pages 327-336
Technical Paper | doi.org/10.13182/NSE11-46
Articles are hosted by Taylor and Francis Online.
This paper discusses a higher-order sliding-mode-observer design for estimating reactivity in a nuclear research reactor. The nonlinear model of the Pakistan Research Reactor-1 (PARR-1) has been tuned and validated with experimental data. This model is then used for higher-order sliding-mode-observer-based reactivity estimation. In thermal reactors, reactivity is a very important reactor variable, as it determines the change of output power variation and is the main variable being manipulated for reactor power control. Linear observers have been used in the past to estimate reactivity, but the bandwidth is limited, and performance gets degraded as the operating point is changed. A nonlinear observer can efficiently address this problem. In this paper a robust higher-order sliding-mode observer is employed to estimate this variable. The higher-order sliding-mode observer is efficient and has the main advantage of reduced chattering. The estimators predict this variable with the measurement of neutron flux only. The estimated value is in close agreement with the theoretically calculated value.