ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Michael Avery, Jun Yang, Mark Anderson, Michael Corradini, Earl Feldman, Floyd Dunn, James Matos
Nuclear Science and Engineering | Volume 172 | Number 3 | November 2012 | Pages 249-258
Technical Paper | doi.org/10.13182/NSE11-69
Articles are hosted by Taylor and Francis Online.
An experimental study of low-pressure, natural convection critical heat flux (CHF) has been carried out with full-scale fuel pins, simulating typical Training, Research, Isotopes, and General Atomics (TRIGA) reactor conditions. The test section is an annular upwardly flowing channel formed by a round tube and a simulated fuel pin heater rod with a chopped-cosine power profile, located in the center of the tube. Experiments were performed under the following conditions: inlet water subcooling varying from 10 to 70 K, pressure varying from 110 to 200 kPa, and natural circulation mass flux up to 400 kg/m2s. CHF was observed, and associated data have been compared with selected CHF correlations. It has been found that the CHF increases as the pressure or mass flux increases, but does not significantly depend on the inlet subcooling. Among the numerous presented CHF data and correlations, few data exist, and no specific correlations have been developed for TRIGA reactor conditions. Because of the lack of specific correlation, the correlations of Bernath, El-Genk et al., Mishima and Ishii, and Block and Wallis have been used to estimate the TRIGA CHF outside of their intended ranges of applicability. These correlations are evaluated against the current experimental data.