ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
L. A. Sedano
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 605-608
Technical Paper | Tritium Science and Technology - Materials Interaction and Permeation | doi.org/10.13182/FST05-A998
Articles are hosted by Taylor and Francis Online.
The H (or D, or T) Sievert's constant for liquid Sn-Li alloys is calculated from thermodynamic data issuing of the Sn-Li binary phase diagram analysis. The range of temperatures investigated is 600-873 K (Sn0.8Li0.2 m.p. ~ 599 K) to maintain single-phase binary melts. The thermodynamic functions of Li-H, Sn-H, Sn-Li are evaluated to derive those of Sn-Li-H. Thus, monotectic solubility data for Sn and Li is analyzed. The calculation is done for high-dilution conditions. A quasi-chemical regular solution model is used for temperature/composition extrapolations when no data is available. The tritium Sievert's constant in Sn0.8Li0.2 at 600 K is: 9.65 10-8 Pa-12, five times the Reiter's measured value for Pb-17Li and ~ 6 times the value in Pb-17Li eutectic obtained by using the same theoretical approach.