ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
T. Kawasaki, Y. Manabe, K. Katayama, T. Takeishi, M. Nishikawa
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 581-584
Technical Paper | Tritium Science and Technology - Materials Interaction and Permeation | doi.org/10.13182/FST05-A992
Articles are hosted by Taylor and Francis Online.
Tungsten is a candidate material for plasma facing components for a fusion reactor. Although many studies on hydrogen behavior in tungsten have been carried out, there is insufficient database for a tungsten re-deposition layer. We have made a tungsten re-deposition layer by a sputtering method using a hydrogen and deuterium RF plasma and have investigated hydrogen retention in the layer and the distribution of the layer in the vacuum chamber. The amount of deposited tungsten increased 2.4 times with varying RF power from 100 W to 250 W. It was found from the SEM observation on the cross section that the formed layer has a columnar structure. At high energy (RF power: 250W), a lot of blisters were observed on the surface. The ratio of hydrogen atoms to tungsten atoms (H/W) in the layer was observed to be 0.1 ~ 0.4 with varying RF power. These values of hydrogen retention were much larger than that for absorption into tungsten. Tritium inventory in a D-T fusion reactor may become larger than expected by the formation of tungsten redeposition layer.