ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
K. Sugiyama, T. Tanabe, N. Bekris, M. Glugla, J. P. Coad
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 573-576
Technical Paper | Tritium Science and Technology - Materials Interaction and Permeation | doi.org/10.13182/FST05-A990
Articles are hosted by Taylor and Francis Online.
Tritium surface distributions on the plasma-facing surface and four sides of JET Mk IIA divertor tiles employed in the D-T operation phase of JET were measured by Tritium Imaging Plate Technique (TIPT). Tritium distribution on the plasma-facing surface was consistent with carbon deposition profiles and asymmetric in both poloidal and toroidal directions. The toroidal asymmetry was attributed to the alignment of the tiles preventing direct impact of flux lines to tile edges. Accordingly, no significant carbon deposition or tritium accumulation was observed on two sides facing the toroidal direction. As already reported, heavy codeposition retaining high levels of tritium was observed on the plasma-shadow area of the horizontal target tile surface and the bottom side of the vertical target tile of the inner divertor region where it was kept relatively cool by water coolant. In addition, TIPT has clearly distinguished at least two different carbon deposition layers with different tritium retention in poloidal direction, showing that the poloidal asymmetry on the horizontal target tiles is due to the different carbon deposition properties in the poloidal direction. All the results suggest that tritium retention in the divertor area, which was determined by the carbon/hydrocarbon distribution, correlates closely with divertor geometry and surface temperature.