ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
K. Katayama et al.
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 561-564
Technical Paper | Tritium Science and Technology - Materials Interaction and Permeation | doi.org/10.13182/FST05-A987
Articles are hosted by Taylor and Francis Online.
Release behavior of hydrogen isotopes from the graphite tiles used in JT-60U was observed using the thermal desorption method where temperature was stepwise elevated to 300, 600 and 1000 °C. When first wall tile was left under helium atmosphere at 600 °C for 8 hours, about 40 % of total amount of hydrogen and deuterium retained in the tile was released, although only a small amount of hydrogen isotopes was released at 300 °C, which is the base temperature of inner wall of JT-60U. This indicates that a higher temperature of inner wall causes hydrogen retention to reduce considerably. When the graphite tiles were exposed to hydrogen at 1000 °C, the release of deuterium and tritium was enhanced. It is considered that the deuterium and tritium left in the graphite tile was released by the isotope exchange reaction. In order to remove almost all deuterium or tritium from the graphite tile without combustion of graphite, isotope exchange method at high temperature is effective. It was found that the amount of hydrogen retained in the graphite tile was much larger than that of deuterium. This indicates that a large amount of deuterium trapped in the tiles during deuterium discharge experiments was replaced with hydrogen during hydrogen discharge experiments. Additionally, depth profiles of hydrogen isotope are discussed from the obtained release curves.