ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
K. Katayama et al.
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 561-564
Technical Paper | Tritium Science and Technology - Materials Interaction and Permeation | doi.org/10.13182/FST05-A987
Articles are hosted by Taylor and Francis Online.
Release behavior of hydrogen isotopes from the graphite tiles used in JT-60U was observed using the thermal desorption method where temperature was stepwise elevated to 300, 600 and 1000 °C. When first wall tile was left under helium atmosphere at 600 °C for 8 hours, about 40 % of total amount of hydrogen and deuterium retained in the tile was released, although only a small amount of hydrogen isotopes was released at 300 °C, which is the base temperature of inner wall of JT-60U. This indicates that a higher temperature of inner wall causes hydrogen retention to reduce considerably. When the graphite tiles were exposed to hydrogen at 1000 °C, the release of deuterium and tritium was enhanced. It is considered that the deuterium and tritium left in the graphite tile was released by the isotope exchange reaction. In order to remove almost all deuterium or tritium from the graphite tile without combustion of graphite, isotope exchange method at high temperature is effective. It was found that the amount of hydrogen retained in the graphite tile was much larger than that of deuterium. This indicates that a large amount of deuterium trapped in the tiles during deuterium discharge experiments was replaced with hydrogen during hydrogen discharge experiments. Additionally, depth profiles of hydrogen isotope are discussed from the obtained release curves.