ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
Noriyuki Momoshima, Yusaku Nagao, Takahiro Toyoshima
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 520-523
Technical Paper | Tritium Science and Technology - Containment, Safety, and Environment | doi.org/10.13182/FST05-A980
Articles are hosted by Taylor and Francis Online.
We evaluated electrolytic separation factors of hydrogen isotopes by SPE (Solid Polymer Electrolyte) for application to environmental tritium analysis. The apparent separation factors a for deuterium and a for tritium were determined as 3.5 ± 0.1 and 6.2 ± 0.5, respectively. The tritium enrichment of 8.4 times was achieved, when a 1000 ml of sample water was electrolyzed to about 60 ml. The chemical composition changes before and after the electrolysis were examined, showing an increase in H+ and Na+ concentrations and a decrease in Mg2+ and Ca2+concentrations. F-, which was not contained in the sample water, was detected after electrolysis accompanying with a reduction of SO42-, Cl- and NO3-. The memory of tritium and ions in the electrolysis cell after electrolysis was possible to be eliminated by washings with de-ionized water. Tritium concentrations of rain at Kumamoto, Japan were determined with a combination of the present electrolytic enrichment system and liquid scintillation counting.