ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Luigi Scibile, Basil Kouvaritakis
Fusion Science and Technology | Volume 36 | Number 2 | September 1999 | Pages 139-164
Technical Paper | doi.org/10.13182/FST99-A98
Articles are hosted by Taylor and Francis Online.
The plasma vertical position in a tokamak can be open-loop unstable with time-varying dynamics. The limitation in the output power of the control amplifier makes the time-varying unstable system particularly difficult to control. Fixed-coefficient linear controllers usually fail to maintain control in the presence of large disturbances, like edge-localized modes (ELMs), which saturate the amplifier output. During the saturation period, the vertical position of the plasma will grow exponentially with the unstable eigenvalue and may reach values that cannot be controlled by the energy provided by the control amplifier, which is limited by practical constraints. The primary sources of disturbances and measurement noise that effect the vertical position are the ELMs and the 600-Hz noise from the thyristor power supplies. The former are present in the form of pulses and appear during high-energy confinement plasma configurations. A novel nonlinear controller for the vertical position based on a discrete adaptive near-time optimum control algorithm (DANTOC) is used to stabilize the system, to maximize the stability region, and to provide robustness with respect to the aforementioned sources of disturbances and measurement noise. The controller is tested in simulation for the Joint European Torus tokamak, and the results demonstrate its feasibility in controlling the vertical position for different plasma configurations. The controller is also tested on the COMPASS-D tokamak, and the results demonstrate the improvement with respect to a simple linear proportional and derivative controller in the presence of disturbances and measurement noise.