ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Luigi Scibile, Basil Kouvaritakis
Fusion Science and Technology | Volume 36 | Number 2 | September 1999 | Pages 139-164
Technical Paper | doi.org/10.13182/FST99-A98
Articles are hosted by Taylor and Francis Online.
The plasma vertical position in a tokamak can be open-loop unstable with time-varying dynamics. The limitation in the output power of the control amplifier makes the time-varying unstable system particularly difficult to control. Fixed-coefficient linear controllers usually fail to maintain control in the presence of large disturbances, like edge-localized modes (ELMs), which saturate the amplifier output. During the saturation period, the vertical position of the plasma will grow exponentially with the unstable eigenvalue and may reach values that cannot be controlled by the energy provided by the control amplifier, which is limited by practical constraints. The primary sources of disturbances and measurement noise that effect the vertical position are the ELMs and the 600-Hz noise from the thyristor power supplies. The former are present in the form of pulses and appear during high-energy confinement plasma configurations. A novel nonlinear controller for the vertical position based on a discrete adaptive near-time optimum control algorithm (DANTOC) is used to stabilize the system, to maximize the stability region, and to provide robustness with respect to the aforementioned sources of disturbances and measurement noise. The controller is tested in simulation for the Joint European Torus tokamak, and the results demonstrate its feasibility in controlling the vertical position for different plasma configurations. The controller is also tested on the COMPASS-D tokamak, and the results demonstrate the improvement with respect to a simple linear proportional and derivative controller in the presence of disturbances and measurement noise.