ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
K. Yamamoto, T. Sakashita, K. Miyamoto
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 500-503
Technical Paper | Tritium Science and Technology - Containment, Safety, and Environment | doi.org/10.13182/FST05-A975
Articles are hosted by Taylor and Francis Online.
In order to predict tritium concentration at ground level near a nuclear site, a conceivable process for tritium transfer in the natural ecosystem must be traced. We developed an Easy Evaluation System for Atmospheric Dispersion (EESAD) code based on the random walk method (RWM) for calculation of the atmospheric dispersion of tritium. The code can deal with the hourly change of weather conditions and tritium release rates as are mainly observed in an accidental release. In order to validate its prediction accuracy, and to verify its effectiveness, we calculated using scenario 3 (constant release) and scenario 4.2 (intermittent release)supplied by BIOMASS (Biosphere Modeling and Assessment) program by IAEA. Tritium concentrations predicted by EESAD calculation agreed well with those observed. Tritium deposition from the plume (dry and wet), re-emission from the soil surface, and infiltration to the lower soil layers were all considered in the EESAD system, and found to be effective to get better agreement. The EESAD is useful for calculating not only a controlled constant release with meteorological changes but also an instantaneous release with hourly changes of the release conditions.