ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Masahiro Saito
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 484-487
Technical Paper | Tritium Science and Technology - Containment, Safety, and Environment | doi.org/10.13182/FST05-A971
Articles are hosted by Taylor and Francis Online.
The computer program TriStat (Tritium dose assessment for stationary release) was used to estimate the human dose under stationary release and to obtain a conservative estimate of the dose after an accidental release as well. The atmospheric behavior of tritium is described by a Gaussian dispersion model. The tritium concentration in the atmosphere, soil, vegetables and cereals were estimated on the basis of tritium inventory of the facility and the release rate of tritium. In the model description, the specific tritium concentrations for the free water component and the organic component are essential. The food chain for humans was modeled by assuming a forage compartment, a plant compartment and an animal compartment. In the model, a virtual plant and a virtual animal were defined.The calculation revealed that the exchange of HTO between atmosphere and plant leaves has a critical role for increasing the human dose both for stationary and accidental release of tritium.