ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Tatsuhiko Uda, Takahiko Sugiyama, Yamato Asakura, Kenzo Munakata, Masahiro Tanaka
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 480-483
Technical Paper | Tritium Science and Technology - Containment, Safety, and Environment | doi.org/10.13182/FST05-A970
Articles are hosted by Taylor and Francis Online.
Recovery of tritium released into a working area in a nuclear fusion plant is a key issue of safety. The catalytic oxidation of isotopic hydrogen including tritium is a conventional method for removing tritium from the air of the room. If a tritium release accident occurs in the fusion plant, large volumes of air should be processed by the air cleanup system. The system should be designed to be able to process the gas with high volumetric velocity. However, the high throughput of air causes pressure drop in the catalyst bed, which results in high load to the pumping system. In this study, and their applicability of honeycomb catalysts to the tritium recovery system was examined. The honeycomb catalyst has an advantage in terms of pressure drop, which is far less than that in conventional particle-packed catalyst beds. The experiments on honeycomb catalysts such as cordierite and Al-Cr-Fe metal alloy indicate their preferable oxidizing performance. Particularly, the metal honeycomb has an advantage for hydrogen gas oxidization at room temperature because it is expected to be less affected memory effect by tritium contamination. Thus, these honeycomb catalysts are applicable to the tritiated gases recovery system with high performance.