ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
Kazuhiro Kobayashi, Osamu Terada, Hidenori Miura, Takumi Hayashi, Masataka Nishi
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 476-479
Technical Paper | Tritium Science and Technology - Containment, Safety, and Environment | doi.org/10.13182/FST05-A969
Articles are hosted by Taylor and Francis Online.
To obtain performance data of atmosphere detritiation system at the off normal events such as fire for the safety of ITER, the detritiation experiment was planned and performed at Tritium Process Laboratory (TPL) in Japan Atomic Energy Research Institute (JAERI) using a new scaled detritiation system for the oxidation performance test which can process gas flow rate of ~2.64 m3/hr in circulation through 2m3 tank. The detritiation system consists of two oxidation catalyst beds (473K and 773K) for converting hydrogen isotopes and tritiated methane in compounds to water vapor and a molecular sieve drying absorber for removing water vapor as the usual detritiation system. In this time, the performance of oxidation catalyst bed of the detritiation system for hydrogen and methane under existence of carbon monoxide or carbon dioxide which are produced in the fire was investigated.Basic performance of the detritiation system for hydrogen (1.9%) and methane (1.3%) in air was evaluated under maximum ventilation flow rate (2.64m3/h). Obtained oxidation efficiency was more than 99.99% for hydrogen in the catalyst bed at 473K and more than 99.9% for methane in the 773K one, respectively. It was confirmed that these performances were maintained even under carbon dioxide of up to 20% , carbon monoxide of up to 10% if sufficient oxygen remained in the process gas, and that the existence of carbon monoxide and carbon dioxide at the fire would not influence the performance of the oxidation catalyst bed in the detritiation system.