ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Kazuhiro Kobayashi, Osamu Terada, Hidenori Miura, Takumi Hayashi, Masataka Nishi
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 476-479
Technical Paper | Tritium Science and Technology - Containment, Safety, and Environment | doi.org/10.13182/FST05-A969
Articles are hosted by Taylor and Francis Online.
To obtain performance data of atmosphere detritiation system at the off normal events such as fire for the safety of ITER, the detritiation experiment was planned and performed at Tritium Process Laboratory (TPL) in Japan Atomic Energy Research Institute (JAERI) using a new scaled detritiation system for the oxidation performance test which can process gas flow rate of ~2.64 m3/hr in circulation through 2m3 tank. The detritiation system consists of two oxidation catalyst beds (473K and 773K) for converting hydrogen isotopes and tritiated methane in compounds to water vapor and a molecular sieve drying absorber for removing water vapor as the usual detritiation system. In this time, the performance of oxidation catalyst bed of the detritiation system for hydrogen and methane under existence of carbon monoxide or carbon dioxide which are produced in the fire was investigated.Basic performance of the detritiation system for hydrogen (1.9%) and methane (1.3%) in air was evaluated under maximum ventilation flow rate (2.64m3/h). Obtained oxidation efficiency was more than 99.99% for hydrogen in the catalyst bed at 473K and more than 99.9% for methane in the 773K one, respectively. It was confirmed that these performances were maintained even under carbon dioxide of up to 20% , carbon monoxide of up to 10% if sufficient oxygen remained in the process gas, and that the existence of carbon monoxide and carbon dioxide at the fire would not influence the performance of the oxidation catalyst bed in the detritiation system.