ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Alexey V. Golubev, Sergey V. Mavrin, Vladimir A. Pavlovsky, Valentin V. Smirnov, Vladimir G. Rogachev
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 447-451
Technical Paper | Tritium Science and Technology - Containment, Safety, and Environment | doi.org/10.13182/FST05-A962
Articles are hosted by Taylor and Francis Online.
When solving 3-D problems for the atmospheric impurity transport in the bounded area, it is essential for the atmospheric dynamics to be correctly computed taking into account the actual terrain topography and environments specified by the boundary conditions. Such conditions as turbulence, convection, condensation and moisture evaporation processes, etc. are to be also taken into account as well as the interaction processes among impurities (gases, aerosols), atmosphere and the Earth's surface.3-D computational fluid dynamics model(CFD) developed on the basis of SRP hydrodynamic code was used to simulate tritium plume evolution and tritium transport in atmosphere under the area with relatively complex topography. SRP code is based on the continuum motion equations (Navier-Stockes equations) and thermodynamic relations taking into account specific features of atmospheric flows and complex topography and is designed to use on PC-type computers.The model has been validated using experimental release of tritium with specified source term and meteorology. Due to low release height above the underlying surface a fine grid was used in the vertical direction near the underlying surface. HT and HTO/H2O vertical fluxes were taken into account. Evolution of HT and HTO activities at 2 sampling locations along the plume axe were available for model-experiment inter-comparison. The modeling results of HT and HTO activities in the air during plume travel are in satisfactory agreement with observed values.