ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
R. Scott Willms, David Dogruel, Richard Myers, Richard Farrell
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 409-412
Technical Paper | Tritium Science and Technology - Tritium Measurement, Monitoring, and Accountancy | doi.org/10.13182/FST05-A955
Articles are hosted by Taylor and Francis Online.
Traditionally the amount of tritium on a surface is determined by swiping the surface with a material such as filter paper and counting the removed tritium by scintillation. While effective, this method can be time consuming, can alter the surface, only measures removable tritium and produces radioactive waste. For a given application each of these considerations may or may not be a disadvantage. A solid state monitor, on the other hand, has the potential to provide rapid analysis, not alter the surface, measure all tritium on a surface and produce little or not radioactive waste. This allure has promoted open wall ion chamber and PIN diode-based tritium surface monitor development, and these techniques have enjoyed certain success. Recently the first tests were performed with an avalanche photodiode (APD) for surface tritium measurement. While quite similar in concept to PIN diode based measurements, side-by-side testing showed that the APD provided substantially better counting efficiency. Considerations included count rate, background, sensitivity, stability and effect of ambient light. Of particular importance in the US, the APD was able to measure concentrations down to the "free release" limit, i.e., the concentration below which items can be removed from radiological control areas.