ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Takao Kawano, Naohiro Tsuboi, Hirotsugu Tsujii, Yamato Asakura, Tatsuhiko Uda
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 405-408
Technical Paper | Tritium Science and Technology - Tritium Measurement, Monitoring, and Accountancy | doi.org/10.13182/FST05-A954
Articles are hosted by Taylor and Francis Online.
A previously developed analyzer for detecting extremely small concentrations of hydrogen in air was evaluated by using it to distinguish hydrogen isotopes. The analyzer utilizes the functions of a gas chromatograph and an atomic absorption spectrophotometer and is based on the reduction reaction of mercuric oxide with hydrogen. Three test samples were used: gas mixtures containing both protium and deuterium with almost equal concentrations of about 5, 20, or 50 cm3/1000 m3 diluted in nitrogen. Each measurement was repeated more than 30 times, and chromatograms were obtained for each test sample. Examination of the chromatograms showed that the retention times for the protium and deuterium could be clearly distinguished. The retention times were virtually constant and indistinguishable, independent of the concentration and repetition time. The peak areas for the protium and deuterium were also stable, independent of the repetition time. Moreover, there was a clear linear relationship between the peak areas and concentrations for both elements. These results show that the analyzer can distinguish the two hydrogen isotopes and estimate concentrations of each as small as about 5 cm3/1000 m3. They also show that it may be possible to use the analyzer to monitor tritium concentrations.