ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
R. A. Surette, J. C. Nunes
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 393-396
Technical Paper | Tritium Science and Technology - Tritium Measurement, Monitoring, and Accountancy | doi.org/10.13182/FST05-A951
Articles are hosted by Taylor and Francis Online.
Fusion research and tritium removal facilities potentially handle large inventories of tritium gas (HT). If any HT is released into the workplace, a fraction may be converted to tritiated water vapour (HTO). A convenient method to determine the activity concentration of each species is necessary to assess the potential hazard since the radiological hazard of HTO is more than 104 that due to HT. Passive samplers for measuring tritiated water vapour (HTO) have been shown to be suitable for use indoors and outdoors. These simple samplers consist of a standard 20-mL liquid scintillation vial with a diffusion orifice that determines the sampling rate.The total tritium samplers described herein are passive or diffusion samplers that contain a small amount of AECL-proprietary wet-proofed catalyst fixed to the underside of the sampling heads to allow conversion of the HT to HTO that is subsequently collected in the sink, (HTO), in the bottom of the sampler. After an appropriate sampling time, liquid scintillation cocktail is added to the vial and the activity collected determined by liquid scintillation analysis. When used in conjunction with the conventional HTO passive sampler the difference between the total and HTO samplers can be used to determine the HT fraction ((HT+HTO) - HTO HT). The sampling rates for the modified diffusion sampler were measured to be 4.6 and 8.1 L/d for HTO and HT, respectively. For a fifteen-minute sampling period, passive samplers can be used to measure tritium activity concentrations from 37 kBq/m3 to 115 MBq/m3.