ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Tetsuya Uchimoto, Kenzo Miya
Fusion Science and Technology | Volume 36 | Number 1 | July 1999 | Pages 92-103
Technical Paper | doi.org/10.13182/FST99-A95
Articles are hosted by Taylor and Francis Online.
Fusion plasma engineers have made remarkable progress in designing a tokamak type of experimental reactor, as evidenced by the International Thermonuclear Experimental Reactor (ITER), which produces fusion energy of 1.5 GW(thermal) for 1000 s at least. However, the ITER design is more expensive and requires more advanced technology than earlier machines. With these concerns in mind, extending design options by using a high-temperature superconductor (HTSC) to improve plasma positional instability by placing HTSC ring coils inside the vacuum vessel would be desirable. Here, improving the plasma instability with HTSC coils is discussed, and a possible design of a smaller machine using the coils based on supporting experiments with HTSC tapes is given.