ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Richard F. Post
Fusion Science and Technology | Volume 57 | Number 4 | May 2010 | Pages 335-342
Technical Paper | doi.org/10.13182/FST10-A9495
Articles are hosted by Taylor and Francis Online.
This paper, part of a continuing study of means for the stabilization of magnetohydrodynamic interchange modes in axisymmetric mirror-based plasma confinement systems, represents a preliminary look at a technique that would employ a train of plasma pressure pulses produced by electron cyclotron resonance heating (ECRH) to accomplish the stabilization. The use of sequentially pulsed ECRH rather than continuous-wave ECRH facilitates the localization of the heated-electron plasma pulses in regions of the magnetic field with positive field-line curvature, e.g., in the "expander" region of the mirror magnetic field, outside the outermost mirror. The technique proposed relies on the time-averaged effect of plasma pressure pulses generated in regions of positive field-line curvature to overcome the destabilizing effect of plasma pressure in regions of negative field-line curvature within the confinement region. The plasma pulses, when produced in regions of the confining field having a negative gradient, create transient ambipolar electric potentials, an effect studied in 1964 in the PLEIADE experiment in France. These electric fields preserve the localization of the hot-electron plasma pulse for times determined by ion inertia. It may be possible to use this aspect of pulsed ECRH not only to stabilize the plasma but also to plug mirror losses in a manner similar to that employed in the tandem mirror.