ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
O. Ågren, V. E. Moiseenko, K. Noack, A. Hagnestål
Fusion Science and Technology | Volume 57 | Number 4 | May 2010 | Pages 326-334
Technical Paper | doi.org/10.13182/FST57-326
Articles are hosted by Taylor and Francis Online.
The straight field line mirror (SFLM) field with magnetic expanders beyond the confinement region is proposed as a compact device for transmutation of nuclear waste and power production. A design with reactor safety and a large fission-to-fusion energy multiplication is analyzed. Power production is predicted with a fusion Q = 0.15 and an electron temperature of [approximately]500 eV. A fusion power of 10 MW may be amplified to 1.5 GW of fission power in a compact hybrid mirror machine. In the SFLM proposal, quadrupolar coils provide stabilization of the interchange mode, radio-frequency heating is aimed to produce a hot sloshing ion plasma, and magnetic coils are computed with an emphasis on minimizing holes in the fission blanket through which fusion neutrons could escape. Neutron calculations for the fission mantle show that nearly all fusion neutrons penetrate into the fission mantle. A scenario to increase the electron temperature with a strong ambipolar potential suggests that an electron temperature exceeding 1 keV could be reached with a modest density depletion by two orders in the expander. Such a density depletion is consistent with stabilization of the drift cyclotron loss cone mode.