ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
O. Ågren, V. E. Moiseenko, K. Noack, A. Hagnestål
Fusion Science and Technology | Volume 57 | Number 4 | May 2010 | Pages 326-334
Technical Paper | doi.org/10.13182/FST57-326
Articles are hosted by Taylor and Francis Online.
The straight field line mirror (SFLM) field with magnetic expanders beyond the confinement region is proposed as a compact device for transmutation of nuclear waste and power production. A design with reactor safety and a large fission-to-fusion energy multiplication is analyzed. Power production is predicted with a fusion Q = 0.15 and an electron temperature of [approximately]500 eV. A fusion power of 10 MW may be amplified to 1.5 GW of fission power in a compact hybrid mirror machine. In the SFLM proposal, quadrupolar coils provide stabilization of the interchange mode, radio-frequency heating is aimed to produce a hot sloshing ion plasma, and magnetic coils are computed with an emphasis on minimizing holes in the fission blanket through which fusion neutrons could escape. Neutron calculations for the fission mantle show that nearly all fusion neutrons penetrate into the fission mantle. A scenario to increase the electron temperature with a strong ambipolar potential suggests that an electron temperature exceeding 1 keV could be reached with a modest density depletion by two orders in the expander. Such a density depletion is consistent with stabilization of the drift cyclotron loss cone mode.