ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
A. A. Ivanov, A. D. Beklemishev, E. P. Kruglyakov, P. A. Bagryansky, A. A. Lizunov, V. V. Maximov, S. V. Murakhtin, V. V. Prikhodko
Fusion Science and Technology | Volume 57 | Number 4 | May 2010 | Pages 320-325
Technical Paper | doi.org/10.13182/FST10-A9493
Articles are hosted by Taylor and Francis Online.
The status of the experiments on the axially symmetric magnetic mirror device gas dynamic trap (GDT) is discussed. The plasma has been heated by skewed injection of 20-keV, 3.5-MW, 5-ms deuterium/hydrogen neutral beams at the center of the device, which produces anisotropic fast ions. Neither enhanced transverse losses of the plasma nor anomalies in the fast ion scattering and slowing down were observed. Extension of neutral beam injection pulse duration from 1 to 5 ms resulted in an increase in the on-axis transverse beta (ratio of the transverse plasma pressure to magnetic field pressure) from 0.4 at the fast ion turning points near the end mirrors to about 0.6. The measured beta value is rather close to or even higher than that expected in different versions of the GDT-based 14-MeV neutron source for fusion materials testing. The density of fast ions with the mean energy of 10 to 12 keV reached 5 × 1019 m-3 near the turning points. The electron temperature at the same time reached [approximate]200 eV. The radial plasma losses were suppressed by sheared plasma rotation in the periphery driven by biasing of end wall segments and the radial limiter in the central solenoid.