ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Yuelei Wu, Huasi Hu, Tiankui Zhang, Zhenghong Li, Yuanping Zhan, Zhenyu Jiang, Jun Chu
Fusion Science and Technology | Volume 57 | Number 3 | April 2010 | Pages 292-297
Technical Paper | doi.org/10.13182/FST10-A9472
Articles are hosted by Taylor and Francis Online.
The relationship and differences between pinhole imaging and penumbral imaging are explained and discussed in detail. A Monte Carlo (MC) model for a practical fusion neutron penumbral imaging system, which is expected to be used as one of the diagnostics of the nuclear facilities in China, was established. The source consists of many assumed discrete elements whose sizes equal the minimum resolution of the imaging system and that are identical to the point source in general concept. The point spread functions (PSFs) of two assumed discrete elements, located in the center and at the edge of a 200-m field of view (FOV) in the neutron source face, were obtained for two cases, respectively: imaging in geometrical near-optics and the more real case of an MC numerical experiment. A series of PSFs of points in the diameter of FOV were obtained, and the PSF spatial shift invariance tolerances were tested within [approximately]20 m accuracy. Using mathematical analysis convolution and MC numerical experiments, "penumbral images" of a neutron source, which consists of just four discrete elements in 20-m space, were obtained. Employing the same program, the two penumbral images were reconstructed, and the obtained original source images were basically the same. This allows the nature of encoding and decoding by the neutron penumbral imaging aperture prototype, which was designed by our work group, to be visualized and realized.