ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Kentaro Ochiai, Yury Velzilov, Takeo Nishitani, Paola Batistoni, Klaus Seidel
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 378-381
Technical Paper | Tritium Science and Technology - Tritium Measurement, Monitoring, and Accountancy | doi.org/10.13182/FST05-A947
Articles are hosted by Taylor and Francis Online.
Tritium benchmark experiments with D-T neutron are a key issue to verify the tritium production rate (TPR) of the fusion blanket. The most useful method to measure the TPR in the neutron benchmark experiments is the liquid scintillation counting with Li2CO3 pellet. Ten years ago, the method of Li2CO3 pellet has been sufficiently verified the accuracy by means of D-T fast neutron irradiation and it was concluded within 10%. However, on the recent breeding blanket design, tritium is dominantly produced with the thermal neutron made with the scattering of D-T neutron and also the accuracy of the tritium production rate is requested below 10%. Therefore, previous verification is not sufficient for the recent blanket design and it is necessary to carry out the activity of the verification again. The JAERI, ENEA and TUD began to carry out the tritium benchmark experiment to verify the tritium production rate for the recent fusion blanket.