ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
D. Testa, H. Carfantan, R. Chavan, J. B. Lister, J-M. Moret, M. Toussaint
Fusion Science and Technology | Volume 57 | Number 3 | April 2010 | Pages 238-273
Technical Paper | doi.org/10.13182/FST10-A9469
Articles are hosted by Taylor and Francis Online.
The measurement performance of the baseline system design for the ITER high-frequency magnetic diagnostic system and attempts at its optimization have been performed using an innovative method based on the sparse representation of signals and the minimization of the maxima of the spectral window for integer mode numbers. This analysis has led to the conclusion that 350 to 500 sensors are in fact needed to satisfy the ITER requirements for the measurement performance and the risk management over the machine lifetime, instead of the originally foreseen approximately 170 sensors. In the companion paper we have presented the general summary results of our work; here we present a more complete overview of the analysis method and further details of our test calculations.