ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
D. Testa, H. Carfantan, R. Chavan, J. B. Lister, J-M. Moret, M. Toussaint
Fusion Science and Technology | Volume 57 | Number 3 | April 2010 | Pages 208-237
Technical Paper | doi.org/10.13182/FST10-A9468
Articles are hosted by Taylor and Francis Online.
The measurement performance of the baseline system design for the ITER high-frequency magnetic diagnostic has been analyzed using an algorithm based on the sparse representation of signals. This algorithm, derived from the SparSpec code [S. Bourguignon et al., Astron. Astrophys., 462, 379 (2007)] has previously been extensively benchmarked on real and simulated JET data. To optimize the system design of the ITER high-frequency magnetic diagnostic, we attempt to reduce false detection of the modes and to minimize the sensitivity of the measurement with respect to noise in the data, loss of faulty sensors, and the displacement of the sensors. Using this approach, the original layout design for the ITER high-frequency magnetic diagnostic system, which uses 168 sensors, is found to be inadequate to meet the ITER measurement requirements.Based on this analysis, and taking into account the guidelines for the risk mitigation strategies that are given in the ITER management plan, various attempts at optimization of this diagnostic system have been performed. A revised proposal for its implementation has been developed, which now meets the ITER requirements for measurement performance and risk management. For toroidal mode number detection, this implementation includes two arrays of 50 to 55 sensors and two arrays of 25 to 35 unevenly spaced sensors each on the low-field side and two arrays of 25 to 35 unevenly spaced sensors each on the high-field side. For poloidal mode number detection, we propose six arrays of 25 to 40 sensors each located in nonequidistant machine sectors, not covering the divertor region and, possibly, poloidal angles in the range 75 < [vertical bar][vertical bar](deg) < 105, as this region is the most sensitive to the details of the magnetic equilibrium. In this paper we present the general summary results of this work, for which more details and an overview of our test calculations are reported in the companion paper.