ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
V. E. Cherkovets et al.
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 374-377
Technical Paper | Tritium Science and Technology - Tritium Measurement, Monitoring, and Accountancy | doi.org/10.13182/FST05-A946
Articles are hosted by Taylor and Francis Online.
Measurements of tritium concentration on the surface and in depth of various samples of constructional materials employed in nuclear power engineering have been made by making use of a magnetic microscope and a magnetic imager. -radiation images of large (up to 0.5 m) radioactive contaminated surfaces in a nonuniform magnetic field were obtained. The magnetic field uniformly increasing in the direction from the observable surface to the recording screen was used. The principal conditions of identical transfer of the image and its reduction coefficient were determined depending on the ratio of the magnetic fields on the sample surface and the screen. The experiments were carried out in vacuum conditions. The magnetic field was produced with a cylindrical rod of a magnetic material and in the screen area it was 0.5 T. Formation, transport and detection of images were fulfilled in a wide range of their reduction ratio (1-1/40).