ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
A. J. H. Donné
Fusion Science and Technology | Volume 57 | Number 2 | February 2010 | Pages 393-400
Diagnostics | Proceedings of the Ninth Carolus Magnus Summer School on Plasma and Fusion Energy Physics | doi.org/10.13182/FST10-A9430
Articles are hosted by Taylor and Francis Online.
The ITER environment imposes many challenges for the various diagnostic systems. At the one hand diagnostic functionalities are required that go well beyond those at present devices. This is because there is a need to actively control (the profiles of) multiple plasma parameters, implying that measurement systems should be accurate and reliable. At the other hand the application of diagnostics at ITER is strongly hampered by constraints arising from the relatively harsh environmental conditions that give rise to phenomena that are new to the diagnostic designs. The nuclear environment puts stringent demands on the engineering and robustness of diagnostics, while the long pulse lengths require high stability of all systems. This paper will present an overview of the diagnostics for ITER with an additional glance in the further future.