ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Kristel Crombé, Guido Van Oost
Fusion Science and Technology | Volume 57 | Number 2 | February 2010 | Pages 372-380
Anomalous Transport | Proceedings of the Ninth Carolus Magnus Summer School on Plasma and Fusion Energy Physics | doi.org/10.13182/FST10-A9428
Articles are hosted by Taylor and Francis Online.
The importance of radial (i.e. perpendicular to the magnetic surface) electric fields was already recognised early in the research on controlled thermonuclear fusion. An initial description of electric field effects in toroidal confinement was given by Budker. Such a configuration with combined magnetic and electric confinement (“magnetoelectric confinement”, where the electric field provides a toroidal equilibrium configuration without rotational transform) was studied by Stix, who suggested that a reactor-grade plasma under magnetoelectric confinement (electric fields of order 1 MV/cm) may reach a quasi-steady-state with ambipolar loss of electrons and some suprathermal ions (e.g. 3.5 MeV α-particles). Experiments such as on the Electric Field Bumpy Torus EFBT provided quite favourable scaling for particle confinement. The possible importance of radial electric fields for transport was in the past repeatedly established. Since the early days the plasma potential has been measured in tokamaks such as ST, TM-4 and ISXB, but because no significant effects of the radial electric field Er on plasma transport were observed under the machine conditions at that time, no further research was conducted in tokamaks.