ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
B. Weyssow
Fusion Science and Technology | Volume 57 | Number 2 | February 2010 | Pages 330-338
Transport Theory | Proceedings of the Ninth Carolus Magnus Summer School on Plasma and Fusion Energy Physics | doi.org/10.13182/FST10-A9424
Articles are hosted by Taylor and Francis Online.
The classical transport theory is strictly valid for a plasma in a homogeneous and stationary magnetic field. In the '60, experiments have shown that this theory does not apply as a local theory of transport in Tokamaks. It was shown that global geometric characteristics of the confining elements have a strong influence on the transport. Three regimes of collisionality are characteristic of the neoclassical transport theory: the banana regime (the electronic diffusion coefficient increases starting from zero), the plateau regime (the diffusion coefficient is almost independent of the collisionality) and the Pfirsch-Schlüter regime (the electronic diffusion coefficient again increases with collisionality).