ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
U. Samm
Fusion Science and Technology | Volume 57 | Number 2 | February 2010 | Pages 241-246
Edge Physics and Plasma-Wall Interactions | Proceedings of the Ninth Carolus Magnus Summer School on Plasma and Fusion Energy Physics | doi.org/10.13182/FST10-A9415
Articles are hosted by Taylor and Francis Online.
The control of wall loads in fusion devices, in particular with respect to the life time limitations of wall components due to material erosion and migration, will be decisive for the realisation of a fusion power plant operating in steady state, while in a pulsed experiment like ITER the primary goal for plasma-wall interaction is the achievement of a high availability. The article describes the grand challenges of plasma-wall interaction research along the needs for ITER and the strategies of ongoing research for further optimization of the design. Addressed are questions related to material limitations, erosion- and transport processes, tritium retention in deposited layers and transient heat loads.