ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Howard Wilson
Fusion Science and Technology | Volume 57 | Number 2 | February 2010 | Pages 174-182
Equilibrium and Instabilities | Proceedings of the Ninth Carolus Magnus Summer School on Plasma and Fusion Energy Physics | doi.org/10.13182/FST10-A9408
Articles are hosted by Taylor and Francis Online.
As one increases the heating power in a tokamak beyond a threshold, the confinement undergoes a bifurcation, with a dramatic increase in the confinement time by a factor ~2. This improved confinement regime, or H-mode, is primarily due to the formation of an insulating region at the plasma edge, where steep pressure gradients can form. A feature of H-mode operation is a series of explosive plasma events, called Edge Localised Modes, or ELMs. They repeatedly expel large amounts of energy and particles from the plasma, with serious consequences for the heat loads that plasma facing components must be designed to handle. The present understanding of these ELMs in terms of ideal magneto-hydrodynamic instabilities will be reviewed in this paper.