ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
R. Keppens, J. P. Goedbloed, J. W. S. Blokland
Fusion Science and Technology | Volume 57 | Number 2 | February 2010 | Pages 137-147
Equilibrium and Instabilities | Proceedings of the Ninth Carolus Magnus Summer School on Plasma and Fusion Energy Physics | doi.org/10.13182/FST10-A9404
Articles are hosted by Taylor and Francis Online.
The magnetohydrodynamic model for fusion plasma dynamics governs the large-scale equilibrium properties, and sets the most stringent constraints on the parameter space accessible without violent disruptions. In conjunction with linear stability analysis in the complex tokamak geometry, the MHD paradigm is also routinely being used to diagnose recurring wave modes and identify potential MHD mode triggers of consequent non-MHD phenomena. On the other hand, it is currently computationally feasible to perform fully nonlinear simulations in tokamak geometry, and determine nonlinear, long-term (i.e. on resistive time scales) evolutions for individual MHD dominated plasma scenarios. It can be expected that this success continues its evolution towards a fully integrated computational analysis of the experimental campaigns, certainly in view of the desired steady-state self-burning plasmas.