ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
R. Lässer, D. K. Murdoch, M. Glugla
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 337-342
Technical Paper | Tritium Science and Technology - Tritium Measurement, Monitoring, and Accountancy | doi.org/10.13182/FST05-A938
Articles are hosted by Taylor and Francis Online.
Unexpectedly large tritium amounts were trapped in the Plasma Facing Components of JET and TFTR during the respective tritium campaigns. Newly created co-deposited layers of carbon and hydrogen were identified as the main sinks. The first wall of ITER in contrast to JET and TFTR will be covered with beryllium, whereas the divertor tiles will be built of tungsten with the exception of a relatively small area of carbon fibre composites. Due to these three materials the composition of the newly created layers will change as a function of plasma operation. Their possible hydrogen content is not known yet and as a consequence the estimates of potentially trapped tritium differ strongly. To respect safety limits measurements of the mobilisable tritium inventories inside the vacuum vessel are required. The present strategy is to rely on the accountancy of the accessible tritium inside the fuel cycle and to derive the quantity of tritium trapped inside the vessel by difference. The tritium injected into the machine is only measured by mass flow meters and no effort is made to determine the tritium exhausted.Enhancements to determine the tritium and deuterium amounts injected into the torus and first proposals for enabling accountancy of the tritium and deuterium released from the torus cryo-pumps on a shot-by-shot basis are given. Only few additional buffer volumes and a micro gas chromatograph are required as the solutions are simple and inexpensive. These tools could be used already in the H-phase of ITER to obtain an integral value of the hydrogen trapped in the co-deposited layers by simple addition of small concentrations of deuterium to the protium and measuring the injected and released deuterium amounts.