ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Henrik Sjöstrand, E. Andersson Sundén, L. Bertalot, S. Conroy, G. Ericsson, M. Gatu Johnson, L. Giacomelli, G. Gorini, C. Hellesen, A. Hjalmarsson, J. Källne, S. Popovichev, E. Ronchi, M. Weiszflog, M. Tardocchi, JET EFDA Contributors
Fusion Science and Technology | Volume 57 | Number 2 | February 2010 | Pages 162-175
Technical Paper | doi.org/10.13182/FST10-A9370
Articles are hosted by Taylor and Francis Online.
Fusion power production is the ultimate goal of fusion research, and its determination is crucial in any fusion energy application. In this paper the principles of collimated neutron flux measurements for fusion plasma power determination are described. In this method, a high-resolution neutron spectrometer provides an absolutely calibrated neutron flux, and a neutron profile monitor ("camera") gives information on the neutron emission profile of the plasma. The total neutron flux seen by the spectrometer is discussed in terms of direct and scattered flux, and a model is set up to evaluate the magnitude of these different components. Particular care is taken to estimate the uncertainties involved, both in the model and the measurements. The method is put to practical use at JET, where a magnetic proton recoil spectrometer and a neutron profile monitor are available. Results from JET's trace tritium experimental campaign in 2003 are presented and show that the systematic uncertainties in fusion power measurements are reduced in comparison to what has been presented for foil activation systems. A systematic error of 6% is reported here. For ITER these results imply that the fusion power can be redundantly measured and with better accuracies than for traditional methods.