ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Masabumi Nishikawa
Fusion Science and Technology | Volume 57 | Number 2 | February 2010 | Pages 120-128
Technical Paper | doi.org/10.13182/FST10-A9366
Articles are hosted by Taylor and Francis Online.
The tritium balance in a D-T fusion reactor is discussed in this paper comparing the amount of tritium consumed in the fueling cycle including the plasma vessel with the amount of tritium generated in the blanket system, using information reported so far. This comparison shows that the overall burning efficiency of tritium in the plasma vessel, the tritium loss ratio represented by tritium trapping in the redeposition layer of the plasma-facing material, and the recovery efficiency in the tritium breeding system play important roles in the tritium balance and that it may not be easy to maintain good tritium economy of a D-T fusion reactor if the proper combination of burning efficiency, tritium loss ratio, and tritium recovery efficiency is not obtained. The allowable limits for the overall tritium burning efficiency, for the tritium loss ratio in the fueling cycle, and for the recovery efficiency to secure the self-sustainable tritium system are also discussed in this paper.