ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Elise B. Fox, Scott D. Greenway, Elliot A. Clark
Fusion Science and Technology | Volume 57 | Number 2 | February 2010 | Pages 103-111
Technical Paper | doi.org/10.13182/FST10-A9364
Articles are hosted by Taylor and Francis Online.
Proton exchange membrane electrolyzers (PEMEs) have potential interest for use for hydrogen isotope separation from water. In order for PEMEs to be fully utilized, more information is needed on the stability of Nafion when exposed to radiation. This work examines Nafion 117 under varying total dosage and dose rate and in water or air. Analytical tools, such as infrared spectroscopy, ion exchange capacity, dynamic mechanical analysis, and total inorganic carbon-total organic carbon (TIC-TOC) were used to characterize the exposed membranes. The water from saturated membranes was analyzed by fluoride and sulfate emissions and TIC-TOC, which provided important data on the stability of the membranes during radiation exposure.