ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Takumi Hayashi, Takumi Suzuki, Masayuki Yamada, Masataka Nishi
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 317-323
Technical Paper | Tritium Science and Technology - Tritium Measurement, Monitoring, and Accountancy | doi.org/10.13182/FST05-A935
Articles are hosted by Taylor and Francis Online.
Zirconium-Cobalt (ZrCo) tritium storage bed with "in-bed" gas flowing calorimetry has been developed as a self-assaying system for the Tritium Storage and Delivery System of ITER. The basic tritium accounting characteristics have been investigated and practical data on the accounting stability has been accumulated under gram level tritium storage for more than 8 years. The initial sensitivity of tritium was about 0.05 g and the accuracy (standard deviation of repeat measurements: two sigma) was about 0.15 g at full tritium storage of 25 g. This initial accounting performance has been maintained after tritium storage for more than 8 years by keeping constant accounting conditions at each inventory measurement. Almost no aging effect of tritium was found except accumulation of 3He in the primary ZrCo tritide vessel, which was easily evacuated to keep initial accounting condition before each inventory measurement.