ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
T. Loarer et al.
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 306-309
Technical Paper | Tritium Science and Technology - Tritium Handling Facilities | doi.org/10.13182/FST05-A933
Articles are hosted by Taylor and Francis Online.
A series of 39 consecutive and repetitive discharges (Ip = 2MA, BT = 2.4T, <ne> = 3.8 × 1019m-3, gas rate ~1.5 × 1022 Ds-1 and with 2.8 MW of ICRH over a duration of 11s) has been performed in JET for a full day in order to study the particle retention behaviour as a function of the wall inventory and the global balance for a significant number of discharges associated to a high gas injection. Since the active pumping was achieved using the divertor cryopump only, its regeneration has allowed a direct calibration of the value of the pumped particle flux to be used in the particle balance analysis during the plasma operations for the "DOC-L" configuration. Taking into account the outgased flux between the discharges, the resulting wall inventory over the full day of operation is zero. During, the 11 sec of the ICRH power, about 8 % of the particles injected are retained in the machine equilibrated by a particle recovery between of 8% of the quantity injected. This shows that the gas released between pulses has been overestimated in previous JET gas balance analysis and that the particles trapped in the machine are localised in areas which are outgasing between the discharges.