ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
K. Isobe et al.
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 302-305
Technical Paper | Tritium Science and Technology - Tritium Handling Facilities | doi.org/10.13182/FST05-A932
Articles are hosted by Taylor and Francis Online.
The behavior of tritium release from the vacuum vessel of JT-60U during air exposure phase at controlled water vapor concentration and gas purging in the wall conditioning phase has been investigated. For the air exposure with varying water vapor concentrations of 40ppm, 300ppm, 680ppm and 3400ppm, tritium concentration in the vacuum vessel of JT-60U was measured. At each water vapor concentration, tritium concentration initially increased with time and then became steady finally. The steady tritium concentration increased with water vapor concentration. The total amount of tritium released from the vacuum vessel was 13MBq for 3400ppm. This amount is almost the same as that removed by 5 hours' H2-GDC, which has been the most effective method for tritium removal from JT-60U. This suggests that tritium in the vacuum vessel of JT-60U can be easily removed by water vapor. Tritium released into exhaust gas during gas purging was also measured for varying gases (H2, He and Ar), at different pressures and temperatures of the vacuum vessel. Tritium concentration of the exhaust gas was about 0.1Bq/cm3 at room temperature and was independent of gas species within the pressure from 0.05 to 0.3 Pa. This result indicates that isotope exchange of tritium with hydrogen molecules was not so active under these purge conditions.