ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
K. Isobe et al.
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 302-305
Technical Paper | Tritium Science and Technology - Tritium Handling Facilities | doi.org/10.13182/FST05-A932
Articles are hosted by Taylor and Francis Online.
The behavior of tritium release from the vacuum vessel of JT-60U during air exposure phase at controlled water vapor concentration and gas purging in the wall conditioning phase has been investigated. For the air exposure with varying water vapor concentrations of 40ppm, 300ppm, 680ppm and 3400ppm, tritium concentration in the vacuum vessel of JT-60U was measured. At each water vapor concentration, tritium concentration initially increased with time and then became steady finally. The steady tritium concentration increased with water vapor concentration. The total amount of tritium released from the vacuum vessel was 13MBq for 3400ppm. This amount is almost the same as that removed by 5 hours' H2-GDC, which has been the most effective method for tritium removal from JT-60U. This suggests that tritium in the vacuum vessel of JT-60U can be easily removed by water vapor. Tritium released into exhaust gas during gas purging was also measured for varying gases (H2, He and Ar), at different pressures and temperatures of the vacuum vessel. Tritium concentration of the exhaust gas was about 0.1Bq/cm3 at room temperature and was independent of gas species within the pressure from 0.05 to 0.3 Pa. This result indicates that isotope exchange of tritium with hydrogen molecules was not so active under these purge conditions.