ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
H. Takenaga, H. Kawashima, S. Nishio, K. Tobita
Fusion Science and Technology | Volume 57 | Number 1 | January 2010 | Pages 94-102
Technical Paper | doi.org/10.13182/FST10-A9270
Articles are hosted by Taylor and Francis Online.
A fueling scenario in a fusion reactor has been investigated, where tritium is fueled in the main plasma and deuterium is fueled in both the main plasma and the edge plasma. The tritium fueling in the main plasma minimizes the tritium fueling rate necessary for sustaining the high tritium density in the main plasma, resulting in the minimum tritium recycling level at the fixed pumping fraction. The deuterium fueling in the main plasma sustains the high deuterium density in the main plasma, and the deuterium fueling in the edge plasma enhances the deuterium recycling level for reducing the divertor temperature. Based on this scenario, particle balance was quantitatively investigated using the SlimCS design parameters at 2.95-GW fusion output with consideration of confinement times separately estimated for the particles fueled in the main plasma and the edge plasma. The fueling rates in the main plasma were evaluated to be 2.5 × 1022/s for tritium and 1.4 × 1022/s for deuterium when the confinement times for the particles fueled in the main and edge plasmas were assumed to be 2 s and 2 ms, respectively, and the divertor pumping fraction was assumed to be 3% of the particle flux to the divertor plates. For enhancement of the recycling level, the additional deuterium fueling in the edge plasma of 3.6 × 1023/s was required in this case. In order to satisfy the tritium balance, it was necessary to suppress the tritium retention rate to <0.01% of the tritium recycling rate and the tritium loss in the tritium cycle system to below 0.2% of the tritium fueling rate with the tritium breeding ratio of 1.05.