ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
J. A. Leuer, B. J. Xiao, D. A. Humphreys, M. L. Walker, A. W. Hyatt, G. L. Jackson, D. Mueller, B. G. Penaflor, D. A. Piglowski, R. D. Johnson, A. S. Welander, Q. P. Yuan, H. Z. Wang, J. R. Luo, EAST Team
Fusion Science and Technology | Volume 57 | Number 1 | January 2010 | Pages 48-65
Technical Paper | doi.org/10.13182/FST10-A9268
Articles are hosted by Taylor and Francis Online.
The Experimental Advanced Superconducting Tokamak (EAST) was the first shaped tokamak of mega-ampere scale to achieve plasma utilizing a fully superconducting poloidal field coil system, and it is addressing ITER relevant superconducting constraints associated with the breakdown, plasma formation, and initial plasma current ramp. Electric field production for plasma start-up is severely limited in fully superconducting machines as a consequence of constraints associated with coil and lead voltages and eddy current heating in the superconducting coils. Such constraints motivate the use of electromagnetic modeling codes to design start-up scenarios for these devices. The successful first plasma campaign of the EAST superconducting tokamak was greatly facilitated by extensive and careful planning, development of appropriate modeling, simulation and diagnostic tools, a highly flexible plasma control system, and a highly experienced international collaboration team. We describe the design and modeling tools used to develop the first plasma scenario along with results of their application in the start-up campaign. Control design tools and plasma control algorithms utilized during the first campaign are discussed. Key physics, engineering, and operations results of the first plasma campaign are presented, including observations relevant to future devices such as ITER.