ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
C. C. Petty, M. E. Austin, J. Lohr, T. C. Luce, M. A. Makowski, R. Prater, R. W. Harvey, A. P. Smirnov
Fusion Science and Technology | Volume 57 | Number 1 | January 2010 | Pages 10-18
Technical Paper | doi.org/10.13182/FST10-A9264
Articles are hosted by Taylor and Francis Online.
Recent experiments on the DIII-D tokamak have examined the effect of particle transport on the electron cyclotron current drive (ECCD) profile using measurements of the magnetic field pitch angles by motional Stark effect polarimetry. While previous ECCD studies on DIII-D did not observe any clear effects of transport, these new experiments at high ECCD power, low density, and radiation temperatures above 20 keV clearly demonstrate that the ECCD profile can be reduced and broadened compared to the Fokker-Planck code CQL3D predictions assuming no radial transport. A diffusion coefficient of [approximate]0.4 m2 /s is required in CQL3D to reproduce the experimental ECCD profile at high relative power densities, while smaller diffusion coefficients are needed at low relative power densities. This level of transport is comparable to the effective particle transport rate needed to maintain the density profile but an order of magnitude less than the electron thermal diffusivity. While radial transport of the current-carrying electrons is potentially detrimental for applications that rely on strong localization of the noninductive current, this effect should be negligible on ITER owing to its large size and low relative power density.