ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Uranium prices rise to highest level in more than two months
Analyst firm Trading Economics posted a uranium futures value of about $82.00 per pound on January 5—the highest futures value in more than two months.
In late October, it had listed a futures price of about $82.30/lb. By late November, the price had fallen to under $76.00/lb.
C. C. Petty, M. E. Austin, J. Lohr, T. C. Luce, M. A. Makowski, R. Prater, R. W. Harvey, A. P. Smirnov
Fusion Science and Technology | Volume 57 | Number 1 | January 2010 | Pages 10-18
Technical Paper | doi.org/10.13182/FST10-A9264
Articles are hosted by Taylor and Francis Online.
Recent experiments on the DIII-D tokamak have examined the effect of particle transport on the electron cyclotron current drive (ECCD) profile using measurements of the magnetic field pitch angles by motional Stark effect polarimetry. While previous ECCD studies on DIII-D did not observe any clear effects of transport, these new experiments at high ECCD power, low density, and radiation temperatures above 20 keV clearly demonstrate that the ECCD profile can be reduced and broadened compared to the Fokker-Planck code CQL3D predictions assuming no radial transport. A diffusion coefficient of [approximate]0.4 m2 /s is required in CQL3D to reproduce the experimental ECCD profile at high relative power densities, while smaller diffusion coefficients are needed at low relative power densities. This level of transport is comparable to the effective particle transport rate needed to maintain the density profile but an order of magnitude less than the electron thermal diffusivity. While radial transport of the current-carrying electrons is potentially detrimental for applications that rely on strong localization of the noninductive current, this effect should be negligible on ITER owing to its large size and low relative power density.