ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
N. K. Hicks, W. Suttrop, K. Behler, M. García-Muñoz, L. Giannone, M. Maraschek, G. Raupp, M. Reich, A. C. C. Sips, J. Stober, W. Treutterer, F. Volpe, Asdex Upgrade Team, S. Cirant, G. D'Antona
Fusion Science and Technology | Volume 57 | Number 1 | January 2010 | Pages 1-9
Technical Paper | doi.org/10.13182/FST57-1-1
Articles are hosted by Taylor and Francis Online.
The ASDEX Upgrade tokamak employs a 60-channel electron cyclotron emission (ECE) radiometer diagnostic for the measurement of radial electron temperature profiles of the plasma. The data acquisition (DAQ) portion of the system has now been upgraded to sample at 1 to 2 MHz, and accordingly, electron temperature fluctuations from 500 kHz to 1 MHz may be measured. The high spatial resolution of [approximately]1 cm and flexible magnetic field coverage from 1.5 to 3.0 T remain unchanged. The system can now provide observations of plasma phenomena on the magnetohydrodynamic timescale, such as neoclassical tearing modes (NTMs) and toroidal Alfvén eigenmodes (TAEs). The upgraded and existing DAQ systems may be run in parallel for comparison, and some of the first plasma measurements using the two systems together are presented, along with an example of localization of [approximately]120-kHz TAEs in the fast ECE data. A principal planned application of the upgraded radiometer is integration into a real-time NTM stabilization loop using targeted deposition of electron cyclotron resonance heating (ECRH) or electron cyclotron current drive. For this loop, it is necessary to determine the locations of the NTM and ECRH deposition using ECE measurements. The NTM location is determined via correlation between ECE and Mirnov coil measurements, and results of this technique for (2,1) and (3,2) NTMs are presented. ECRH deposition is located by observing the modulation signature of the injected ECRH power in ECE measurements. Several additional applications enabled by the upgraded radiometer are also discussed.