ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
R. J. H. Pearce et al.
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 274-279
Technical Paper | Tritium Science and Technology - Tritium Handling Facilities | doi.org/10.13182/FST05-A926
Articles are hosted by Taylor and Francis Online.
'Trace Tritium Experiments' (TTE) were successfully performed on JET in 2003. The Campaign marked the first use of tritium in JET plasmas since the Deuterium-Tritium Experiment (DTE1) Campaign in 1997, and was the first use of tritium in experiments under the EFDA organisation with the UKAEA as JET Operator. The safety and regulatory preparations for the experiment were extensive. Since JET has been operated by the UKAEA the operations have followed the model of a licensed nuclear site. The safe operation of the JET torus is demonstrated in a safety case. Key Safety Management Requirement (KSMR) and Key Safety Related Equipment (KSRE) are identified in the Safety Case for DT operation. The safe operation of the torus is within the bounds of, and under the control of, an Authority to Operate (ATO). New technical challenges were presented by the need to inject and account for small quantities of tritium in very short pulses (~80ms), with an accurate time stamp. The safety and operational management of the campaign are described. Valuable lessons were learned which would help in running future experiments. It is concluded that JET is in a strong position to run future trace tritium and full DT discharges.