ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
D. L. Yu, S. Hacquin, C. Fenzi, P. Lotte
Fusion Science and Technology | Volume 56 | Number 4 | November 2009 | Pages 1521-1528
Technical Paper | doi.org/10.13182/FST09-A9255
Articles are hosted by Taylor and Francis Online.
A genetic algorithm (GA)-based method has been developed to analyze Charge-eXchange Recombination Spectroscopy (CXRS) data and provide in-between shot evaluation of the ion temperature profile during Tore Supra experiments. The GA method proposed here proves to be fast and fairly accurate, even when analyzing low signal-to-noise data. Simulations using theoretical signals suggest that the ion temperature and the plasma rotation velocity are expected to be determined with a precision better than 10% for a noise level up to 5% of the spectrum peak. The good agreement with the commonly used KS4FIT code when analyzing CXRS experimental data - typically within 30% for ion temperature measurements - confirms the efficiency of such an analysis tool.